
AD-A245 664 'iON PAGE 'onn004-e1iiI I~II~I~ lOPAENo. 0704-0188 _________

111111d, li"i Iw Y hsr ml€ d OCi ooftdWn d omiya 2 u vnmioQ for rsclvxm him buron, to Wasf
Hi ay. *Sa 1204. Atilt , VA 2 -4302. and to f Offl of Irknation and v Am taw, Office o

. AGENCY "3. REPORT TYPE AND DATES COVERED

Final: 25 April 1991 to 01 Jun 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Intermetrics, Inc., UTS Ada Compiler, Version 302.03, IBM 3083 under UTS 580
Release 1.2.3 (Host & Target), 91042W1 .11141

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-456.1191
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/IONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE-

Approved for public release; distribution unlimited.

13, ABSTRACT (Maximum 200 words)

Intermetrics, Inc., UTS Ada Compiler, Version 302.03, IBM 3083 under UTS 580 Release 1.2.3 (Host & Target), ACVC
1.11.

OTIC
B Q 5199211
B1 92-02718

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability. Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT

OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298. (Rev 2-89)
Prescribed by ANSI Std. 239-128

AVF Control Number: AVF VSR 456.1191
16-Novemibe r-19 i

90-11-16-INT

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 910425W1.11141
Intermetrics, Inc.

UTS Ada Compiler, Version 302.03
IBM 3083 => IBM 3083

Prepared By:
Ada validation Facility

ASD/SCEL
Wright Patterson AFB OH 45433-6503

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 25 April, 1991.

Compiler Name and Version: UTS Ada Compiler, Version 302.03

Host Computer System: IBM 3083 under UTS 580 Release 1.2.3

Target Computer System: IBM 3083 under UTS 580 Release 1.2.3

Customer Agreement Number: 90-11-16-INT

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910425W1.11141 is awarded to Intermetrics, Inc. This certificate expires
on 1 June 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Dire or i iputer & Software Engineering Division
Inst i u teV or Defense Analyses
Alexandria VA 22311 Acoesslon For

N7IS CA&I

El

AUT' Joint Program Office
Dr. John Solomond, Director .

Department of Defense
Washington DC 20301 I_, t.r!I) ,

1H I 1L "al
I *~~rc~0!j i

DECLARATION OF CONFORMANCE

Customer: Intermetrics, Inc., Cai.bridge, MA

Ada Validation Facilizy: ASD/SCEL Wright-Patterson AFB, OH 45433-6503

ACVC Version: 1.11

Ada Implementation

Compiler Name and Version: UTS Ada Compiler, Version 302.03
Host Computer System: IBM 3083, UTS 580 Release 1.2.3
Target Computer System: same

Customer's Declaration

i, the undersigned, representing Intermetrics, Inc., declare that
Intermetrics, Inc. has no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A in the implementation listed
in this declaration. I declare that Intermetrics, Inc. is the owner
of record of the above implementation and the certificates shall be
awarded in Intermetrics' corporate name.

____ ___ ___ ___ ___ Date: 3 /1?
Dennis Struble, Deputy Gen4ial Manager,
Development Systems Group, Intermetrics, Inc.

TABLE OF CONTEN~TS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT. 1-1
1.2 REFERENCES...1-2
1.3 ACVC TEST CLASSES.................1-2
1.4 DEFINITION OF TERMS................1-3

CHAPTER 2 IMPLEMENTATION DEPENDNCIES

2.1 WITHDRAWN TESTS..................2-1
2.2 INAPPLICABLE TESTS.................2-1
2.3 TEST MODIFICATIONS.................2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIROMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUTMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has nc
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Ma-ua WT ETe da Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] A Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

[UG891 Za Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of 'ne
Ada Standard. The procedure CHECK FILE is used to check the contents ci
text files written by some of the ilass C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set cf
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. :lass
B tests are not executable. Each test in this class is compiled and r'e
resulting compilation listing is examined zo verlf, .-r-at 4ii .. ation± zr
the Ada Standard are detected. Some of -he class =: ts :cn :le;.. .az
code which must not be flagged illegai cy :he :oznp.e_ rhilc: oena-.'. Lz
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which nrovides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of tne data
necessary for the execution of the program; executes
user-written or useL-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.

Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration rPro90].

Validation The process of checking the conformity ot an Ada compilez c.G
the Ada programming language and of issuing a -7ertificat
for this implementation.

withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test :bjeczive Dr
contains erroneous or illegal use of :le Ada :r=gramming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 14 MARCH 1991.

E28005C B28006C C34006D C35508I C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A A74006A C74308A B83022B B83022H B83025B
B83025D C83026A B83026B C83041A B85001L C86001F
C94021A C97116A C98003B BA2011A CB7001A CB7001B
CB7004A CC1223A BC1226A CC1226B BC3009B BDlB02B
BDlB06A ADlBO8A BD2AO2A CD2A21E CD2A23E CD2A32A
CD2A41A CD2A41E CD2A87A CD2BI5C BD3006A BD4008A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A
CD4051D CD5111A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B AD7206A BD8002A
BD8004C CD9005A CD9005B CDA201E CE2107I CE2117A
CE2117B CE2119B CE2205B CE2405A CE3111C CE3116A
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type SHORTINTEGER; for
this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45611B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORTINTEGER; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type LONGFLOAT;
for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45423A..B (2 tests), C45523A, and C45622A check that if
MACHINE OVERFLOWS is TRUE and the results of various floating-point
operations lie outside the range of the base type, then the proper
exception is raised; for this implemrent-tion, MAC'.!iNTrERFTaS is
FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point ocerations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAXMANTISSA is less than 47.

C46013B, C46031B, C46033B, and C46034B contain length clauses that
specify values for small that are not powers of two or five; this
implementation does not support such values for small.

IMPLEMENTATION DEPENDENCIES

D55A03E..H (4 tests) use 31 levels of loop nesting which exceeds the
capacity of the compiler.

D56001B uses 65 levels of block nesting which exceeds the capacity of
the compiler.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before the separate compilation of its body (and any of its subunits);
this implementation requires that the body and subunits of a generic
unit be in the same compilation as the specification if instantiations
precede them. (See section 2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type. The representation which this implementation
uses for floating point types is the smallest available; therefore, when
this test attempts to use a representation of other than 32 or 64 bits,
the length clause is rejected.

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINECODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT iO
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compilec

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given combination
of mode and access method; this implementation supports these
operations.

Test File Operation Mode Fl AcCeSs Method

CE2102D CREATE IN FILE SEQUENTIAL !C
CE2102E CREATE OUT FILE SEQUENTIAL-IC
CE2L102F CREATE INOUT FILE DIRECT IC
CE21021 CREATE IN FILE DIRECT-IO
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN fILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT-FILE SEQUEIAL-IO

23

IMPLEMENTATION DEPENDENCIES

CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT-FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT IO
CE2102W RESET OUT FILE DIRECT IO
CE3102E CREATE IN FILE TEXTI
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT-IO
CE3102I CREATE OUT FILE TEXT-IO
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded7 this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3111B and CE3115A associate multiple internal text files with the same
external file and attempt to read from one file what was written to the
other, which is assumed to be immediately available; this implementation
buffers output. (See section 2.3.)

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise USE ERROR
if they specify an inappropriate value for he external file; there are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 6 tests.

The following tests were split into two or :nere tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

BA1I01C BC3205D

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the separate compilation of that unit's body; as allowed by
AI-257, this implementation requires that the bodies of a generic unit be

2-4

IMPLEMENTATION DEPENDENCIES

in the same compilation if instantiations of that unit precede the bodies.
The instantiations were rejected at compile time.

CE3111B and CE3115A were graded inapplicable by Evaluation Modification as
directed by the AVO. The tests assume that output from one internal file
is unbuffered and may be immediately read by another file that shares the
same external file. This implementation raises END ERROR on the attempts
to read at lines 87 and 101, respectively.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in thi. validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for sales or technical information about this Ada
implementation system, see:

Mike Ryer
Intermetrics, Inc.
733 Concord Ave.
Cambridge MA 02138

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable rests 3757
b) Total Number of Withdrawn Tests 93
c) Processed Inapplicable Tests 119
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 320

g) Total Number of Tests for ACVC 1.11 4170

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was

taken on-site by the validation team for processing. The contents of the
the magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation. Results were transferred to
via RSCS to a Sun 4 for printing.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option I Switch Effect

LIB Ada program library name

LISTING Name of listing file

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXIN LEN 255

$BIGIDI (I..V-l => 'A', V => '1')

$BIG ID2 (l..V-I => 'A', V => '2')

$BIGID3 (l..V/2 => 'A') & '3' &
(l..V-l-V/2 => 'A')

$BIGID4 (l..V/2 => 'A') & '4' &

(i..V-l-V/2 => 'A')

$BIG INT LIT (l..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (l..V/2 => 'A') &

$BIG STRING2 ... & (l..V-l-V/2 => 'A') & '1' &

$BLANKS (l..V-20 => '

$MAXLENINTBASED LITERAL
"2:" & (l..V-5 => '0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (l..V-7 => '0') & "F.E:"

A-1

MACRO PARAMETERS

$MAXSTRINGLITERAL ''& (l..V-2 => 'A') &'"

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 21.47_483_647

$DEFAULTM24_SIZE 2**31

$DEFAULTSTORUNIT 8

$DEFAULTSYSNAME UTS

$DELTADOC 2.0**(.-31)

$ENTRYADDRESS SYSTEM.MAKEADDRESS (l640#)

$ENTRY ADDRESS1 SYSTEM. MAKE ADDRESS (l680#)

$ENTRYADDRESS2 SYSTEM.MAKEADDRESS (16*100*)

$FIELDLAST 2_147_483_647

$ FILETERMINATOR TESTWITHDRAWAN

$FIXED-NAME NO SUCH-FIXED TYPE

S FLOATNAME NOSUCHFLOATTYPE

SFORMSTRING fl

SFORM STRING2 "CANNOT RESTRICT FILE CAPACIr;"

$ GREATERTHANDURATION
90_000.0

$ GREATER THAN DURATION BASE LAST
10To 0U 00 0. 0

$ GREATERTHANFLOAT-BASE LAST
_ _ - .- ft+63

$ GREATER THAN FLOAT SAFE LARGE
-16#0.FFFFFFFFFFFFEI#E+63

A-2

MACRO PARAMETERS

$GREATERTHAI'ISHORTFLOAT SAFE LARGE
16#U. FFFtFF9#E+63

SHIGHPRIORITY 127

$ILLEGALEXTERNAL FILE NAI4E1
MISSING/DIRECTORY/Fl LENANE

$ ILLEGALXERALFILE NME2
STILL/NO/DIRECTORY/FILENAME

$ INAPPROPRIATELINELENGTH
-1

$ INAPPROPRIATEPAGELENGTH
-1

$INCLUDE-PRAGMAl "PRAGMA INCLUDE ("A28006D1 .TST")"

$INCLUDEPRAGMA2 "PRAGMA INCLUDE ("B28006F1.TST")"

SINTEGERFIRST -2147483648

$INTEGER-LAST 2147483647

$INTEGERLASTPLUS_1 2_147_483_648

$ INTERFACELANGUAGE AlEASSEMBLER

$LESSTHANDURATION -90_000.0

$LESS THAN-DURATIONBASE FIRST
-10 000_000.0

SLINETERMINATOR ASCII.LF

$LOW-PRIORITY -127

$MACHINECODESTATEMNT
NULL;

$MACHINECODETYPE NO-SUCH-TYPE

$MANTISSADCC 31

SMAX-DIGITS 15

SMAXINT 2147483647

$MAXINTPLUS 1 2147483648

$MIN-INT -2147483648

A- 3

MACRO PARAMETERS

$NAME NOSUCHINTEGER'IYPE

$NAMELIST UTS,MVS,G'IS,PRIME5O,SPERRY1100,
MILSTD_1750A

$NAMESPECIFICATIONi /acvc/testing/1/tst-tnlp/X2120A

$NAMESPECIFICATION2 /acvc/testing/1/tst-tmp/X2120B

$NAMESPECIFICATION3 /acvc/testing/1/tst-txnp/X3119A

$NEGBASEDINT 16#FFFFFFFE#

$NEWJ MEM SIZE TEST WITHDRAWN

$NEWSTORUNIT 8

$NEWSYSNAME TESTWITHDRAWN

$PAGETERMINP.TOR TESTWITHDRAWN

SRECORD-DEFINITION TEST WITHDRAWN

$RECORDNAME TESTWITHDRAWN

$TASKSIZE 96

$TASKSTORAGE-SIZE 1024

$TICK 1.OE-3

$VARIABLEADDRESS SYSTEM .MAKEADDRESS (16#0020#)

$VARIABLEADDRESS1 SYSTEM.MAKEADDRESS (16*0024*)

$VARI.ABLEADDREsS2 SYSTEM.MAKEADDRESS (16*0028*)

$YOURPRAGMA TESTWITHDRAWN

A- 4

APPE201IX B

COMPILATION SYSTEM OPTIONS

COMPILER OPTIONS

The compiler options of this Ada implementation, as described in this

Appendix, are provided by the customer, Unless specifically noted

otherwise, references in this appendix are to compiler documentation and

not to this report.

B-1

COMPILER OPTIONS

-- AIECOMP : AIE Compiler Driver

type YES NOTYPE is (YES, NO);
subtype

OPTIMIZE RANGE is INTEGER range 0 .. 10;
type FLAGTYPE is (YES, NO, ONMESSAGE);
type PHASE is (TB, SEM, GEN, STO, EXP, FLOW, CG, FLOWCG,

SRCINT, LISTER, BLLISTER, DILISTER, ECHO, NONE);

procedure AIECOMP(
SOURCE : in STRING
LIB : in STRING : "ADALIB";
LISTING : in STRING fill.
STATS : in YESNO TYPE : NO;
OPTIMIZE : in OPTIMIZERANGE : 10;
LIST : in FLAGTYPE : ONMESSAGE;
ASM : in YES NO TYPE NO;
NUM INSTRS : in YES NOTYPE : NO;
OPTIONSFILE : in STRING :lilt

SHOWOPTIONS : in YES NO TYPE : NO;
VERSION : in STRING : "None";
STARTWITH : in PHASE : TB;
STOPAFTER : in PHASE : CG;
DUMPDIANAAFTER : in PHASE : NONE;
DUMPBILLAFTER : in PHASE : NONE;
TBOPT : in STRING i "",
SEMOPT : in STRING : "",
GENOPT : in STRING :f"",

STOOPT: in STRING :
EXPOPT : in STRING fill

FLOWOPT : in STRING fill.
CGOPT : in STRING :f"",

FLOWCGOPT : in STRING :fill

SRCINTOPT : in STRING
LISTOPT : in STRING lilt.
ALLOPT: in STRING
DEBUG : in YESNOTYPE : NO

SOURCE : Ada source file
-- LIB : Ada program library
-- LISTING : Name of listing file
-- STATS : Requests compilation statistics (yes or no)
-- OPTIMIZE : Controls code optimization (10 is all)
-- LIST Controls generation of listing
-- ASM Requests assembly language listing (yes or no)
-- NUM INSTRS Requests the number of instructions generated (yes or no
-- OPTIONSFILE File to read for additional phase options
-- SHOWOPTIONS Show the options passed to each phase

VERSION The default version of the compiler is determined from t
-- STARTWITH The phase to begin the compilation with
-- STOPAFTER The last phase in the compilation
-- DUMPDIANAAFTER : Dumps the DIANA of the compilation

DUMPBILLAFTER : Dumps the BILL of the compilation
-- TBOPT Options passed thru to tree build

-- SEOPT : Options passed thru to semantics
-- GENOPT : Options passed thru to gen inst
-- STOOPT : Options passed thru to storage
-- EXPOPT : Options passed thru to expand
-- FLOWOPT : Options passed Lhru to flow
-- CGOPT : Options passed thru to codegen
-- FLOWCGOPT : Options passed thru to the combined flow-cg
-- SRC INTOPT : Options passed thru to the source intersperser
-- LISTOPT : Options passed thru to the lister
-- ALLOPT : Options which will be passed to ALL executables
-- DEBUG : Controls debugging output of the aiecomp executable

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

B-2

LINKER OPTIONS

-- AIEBUILD : AIE Program Builder

type YES NO TYPE is (YES, NO);
type PHASE- is (PBCONV, LD, MKDEMAND);

procedure AIEBUILD(
UNIT : in STRING;
LIB : in STRING "ADALIB";
LISTING : in STRING :l "'
EXEC : in STRING ""

SHAREABLE : in YES NO TYPE - YES;
XREF : in YESNOTYPE : NO;
SYMTAB : in YES NO TYPE : NO;
SHOW LINKS : in YES NO TYPE : YES;
SHOWOPTIONS : in YESNOTYPE : NO;
STATS : in YESNO TYPE : NO;
DEMAND : in YESNO TYPE : NO;
MAP : in YES NO TYPE : NO;
VERSION : in STRING : "None";
ARCHIVELIST : in STRING : "".
RTSVERSION : in STRING : "4.0";
STARTWITH : in PHASE : PBCONV;
STOPAFTER : in PHASE : LD;
PBCONVOPT : in STRING :Vit

LDOPT : in STRING " l

DEBUG : in YES NO TYPE :NO

-- UNIT : Name of Ada main
-- LIB : Ada program library
-- LISTING : Name of listing file
-- EXEC : Where to put the resultant executable
-- SHAREABLE :Make the text read-only and shareable by multiple users
-- XREF :Produce a cross reference listing

SYMTAB :Correspondence between Ada names, link names, and addresses
SHOWLINKS :List the catalog links of program library

-- SHOW.OPTIONS :Show the options passed to each of the builder phases
STATS : Requests building statistics (yes or no)
DEMAND : Make the executable demand-paged (12 UTS only)

-- MAP : Produce a link map
-- VERSION : Version of the Program Builder
-- ARCHIVELIST : Name of file containing a list of archives
-- RTSVERSION : Version of the RTS to use
-- STARTWITH : Phase to begin linking with

STOPAFTER : Phase to end linking with
-- PBCONVOPT : Options passed thru to pbconv

LDOPT : Options passed thru to ld
-- DEBUG : Controls dcbugging output of the aiebuild executable

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDIRD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 15 range -1#0.FFFFFFFFFFFFFF#E63
16#0.FFFFFFFFFFFFFF#E63;

type SHORTFLOAT is digits 6 range -16#0.FFFFFF#E63 .. 1640.FFFFFF#E63;

type DURATION is delta 2.0 ** (-14) range -86400.0 .. 86400.0;

end STANDARD;

(-.

I i iii i - 1.

Appendix F. IMPLEMENTATION DEPENDENCIES

This section constitutes Appendix F of the Ada LRNI for this
implementation. Appendix F from the LRM states:

The Ada language allows for certain machine-dependencies 7n a controlled
manner. No machine-dependent syntax or senantic extensions or
restrictions are allowed. The only allowed impleinen tation-dependencies

correspond to implementation-dependent pragmas and attributes, certain
machine-dependent conventions as mentioned in Chapter 13. and certain
allowed restrictions on representation clauses.

The reference manual of each Ada implementation must include an appendix
(called Appendix F) that describes all implementation-dependent
characteristics. The Appendix F for a given implementation must list in
particular:

1. The form. allowed places, and effect of every implementation-
dependent prayma.

2. The name and the type of every implementation-dependent attribute.

3. The specification of the package SYSTEM (see 13.7).

4. The list of all restrictions on representation clauses (see 18.1/.

5. The conventions used for any implementation-generated name
denoting implein en tation-dependent compon en ts (see 13.4).

6. The interpretation of expressions that appear in address clauses,
including those for interrupts (see 13.5).

7 Any restriction on unchecked conversions (.see 13.10.2).

S. Any implementation-dependent characteristics of the input-output
packages (see 14).

In addition, the present section will describe the following topics:

9. Any implementation-dependent niles f'or termination of tasks
dependent on library packages (see 9.4:13).

10. Other implementation dependencies.

11. Compiler capacity limitations.

F.1 Pragmas

This section describes the form, allowed places. and effect of every
implementation-dependent pragma.

F. 1.1 Pragmas LIST, PA GE, PRIORITY, ELABORATE

Pragmas LIST. PAGE. PRIORITY and ELABORATE are supported exactly
in the form. in the allowed places, and with the effect as described in the LRM.

F.1.2 Pragma SUPPRESS

Form: Pragma SUPPRESS (identifier
where the identifier is that of the check that can b omitted. This is as
specified in LRM B(14), except that suppression of checks for a particular
name is not supported. The name clause (ON=>name). if given, causes
the entire pragma to be ignored.

The suppression of the following run-time checks, which correspond
to situations in which the exceptions CONSTRAINTERROR.
STORAGE-ERROR, or PROGRAINLERROR may be raised. are
supported:

ACCESSCHECK
DISCRIMINANTCHECX
NIDE-XCHECI<

LENGTHCHECK
RANGECHECK
STORAGECHECK
ELA.BORATIONCHECK

The checks which correspond to situations in which the exception
NUMERICERROR may be raised occur in the hardware and therefore
pragma SUPPRESS of DIVISIONCHECK and OVERFLO\WCHECI,.
are not supported.

Allowed Places: As specified in LRM B(14) : SUPPRESS.

Effect: Permits the compiler not to emit code in the unit being compiled to
perform various checking operations during program execution. The
supported checks have the effect of supprcssing the specified check as
described in the LRM. A pragma SUPPRESS specifying an unsupported
check is ignored.

F. 1.3 Pragma SUPPRESSALL

Forin: Pragma SIPPRESS.-\LL

Allowed Places: As specified in LRM B(14) for pragma SUPPRESS.

Effect: The implementation-defined pragma SUPPRESS-ALL has the same
effect as the specification of a pragma SUPPRESS for each of the
supported checks.

F. 1.4 Pragma INLINE

Form: Pragma INLINE (SubprogramNameCommaList

Allowed Places: As specified in LRM B(4) : INLINE.

Effect: If the subprogram body is available, and the subprogram is not recursive.
the code is expanded in-line at every call site and is subject to all
optimizations.

The stack-frame needed for the elaboration of the inline subprogram will
be allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference. as for non-
inline subprograms. Register-saving and the like will be suppressed.
Parameters may be stored in the local stack-frame or held in registers. as
global code generation allows.

Exception-handlers for the INLINE subprogram will be handled as for
block-statements.

Use: This pragma is used either when it is believed that the time required for
a call to the specified routine will in general be excessive (this for
frequently called subprograms) or when the average expected size of
expanded code is thought to be comparable to that of a call.

F.1.5 Pragma INTERFACE

Form: Pragma INTERFACE (language-name. subprogram-name
where the language-name must be an enumeration value of the type
SYSTEM.SupportedLanguageName (see Package SYSTE I
below).

Allowed Place: As specified in LRM B(5) : INTERFACE.

Effect: Specifies that a subprogram will be provided outside the Ada program
library and will be callable with a specified calling interface. Neither an
Ada body nor an Ada body-stub may be provided for a suiprogran for
which INTERFACE has been specified.

l' e: I'se with a sublprogranl being provided via another program nin
language :nd for which no b(v will 1,e given in any Ada progra in....

also the LIN.NANME pragma.

F.1.6 Pragma LINK_NAME

Form: Pragma LINI_N.ANIE (subprogram-name. link-name

Allowed Places: As specified in LRM B(5) for pragma INTERFACE.

Effect: Associates with subprogram subprogram-name the name link-name as
its entry point name.

Syntax: The value of link-name must be a character string literal.

Use: To allow Ada programs. with help from INTERFACE pragma. to
reference non-Ada subprograms. Also allows non-Ada programs to call
specified Ada subprograms.

F.1. 7 Pragma CONTROLLED

Form: Pragma CONTROLLED (AccessTypeName

Allowed Places: As specified in LRIM B(2) : CONTROLLED.

Effect: Ensures that heap objects are not automatically reclaimed. Since no
automatic garbage collection is is ever performed, this pragma currently
has no effect.

F.1.8 Pragma PACK

Form: Pragma PACK (typesimple-name

Allowed Places: As specified in LRM 13.1(12)

Effect: Components are allowed their minimal number of storage units as
provided for by their own representation and/or packing.

Floating-point components are aligned on storage-unit boundaries, either
4 bytes or 8 bytes, depending on digits.

Use: Pragma PACK is used to reduce storage size. This can allow records
and arrays, in some cases. to be passed by value instead of by reference.

Size reduction usually implies an increased cost of accessing components.
The decrease in storage size may be offset by increase in size of accessing
code mid by slowing of accessing operations.

- I

F.1.9 Pragmas SYSTEMNAME, STORAGEUNIT,
MEMORYSIZE, SHARED

These pragmas are not supported and are ignored.

F. 1.10 Pragma OPTIMIZE

Pragma OPTIMIZE is ignored; optimization is always enabled.

F.2 Implementation- dependent Attributes

This section describes the name and the type of every implementation-
dependent attribute.

There are no implementation defined attributes. These are the values for
certain language-defined, 'implementation-dependent attributes:

Type INTEGE!.
INTEGER'SIZE = 32 -- bits.
INTEGER'FrRST = - (2--31)
INTEGER'LAST = (2--31-1)

Type SHORT-FLOAT.
SHORT-FLOAT'SIZE = 32 -- bits.
SHORT-FLOAT *DIGITS = 6
SHORT-FLOATMANTISSA = 21
SHORT-FLOAT'EMAX = 84i
SHORT-FLOAT'EPSILON = 2.0--(-20)
SHORT-FLOAT'SMALL = 2.0**-5
SHORT-FLOATLARGE =2.0**84
SHORT-FLOAT'NMACINE..ROUNDS = false
SHORTFLOAT'MvACHINERADIX = 16
SHORT-FLOATMAGHINE&MANTISSA = 6
SHORT-FLOAT'MACHINEEMIAX = 63
SHORT-FLOAT'MACHINEENIIN =-64
SHORT-FLOAT'MlACHJNE-OV ERFLOWS = false
SHORT.YLOAT'SAFE-EMKX = 252
S;HORT-FLOAT'SAFE-SMALL = 16#0.800000#E-63
SHOR T-FLOAT'SAFE-LARGE = I 6#0.FFFFFS#E63

Type FLOAT.
FLOAT'SIZE =64 -- bits.
FLOAT'DIGITS = 1
FLOAT EANTISSA = 5
FLOAT EMAX = 204
FLOAT'EPSILON = 2.0**(-50)
FLOAT'SMALL = 2.0**(.205)
FLOAT'LARGE= l02*-1).*21
FLOATNIACHENE-ROUNIDS = false
FLOAT')MACHI1NER-.IX = 16
FLOAT'N 1ACHINE_..NRVNTISSA = 1-1
FLO.\A~T'ACHINEEM\AX 6:3
FLO.ATANIACHINEENIN =-8

FL....\f.....\\S J.

FLOAT'SAFE-EMAX = 252
FLOAT'SAFE-SNMALL =16#0.80000000000000#E-63
FLOAT'SAYE-LARGE = 16#.FFFFFFFFFFFFEO#E63

Type DURATION-
DURATION7DELTA = 2.O*(-14) -- seconds

DURATION'FIRST = - 86,400

DURATION7LAST = 86,400
DURATION'SI\LUL= 2.0 --(-14)

Type PRIORITY.
PRIORITYFIRST =-127

PRIORIT'LAkST = 127

F.3 Package SYSTEM

package SYSTEM is

type ADDRESS is pr vate - - , . /=" de ined impl ici ly
type NAME is (UTS, MVS, CM S Pr ime50 Sperry I100. MILSTDi-750A)

SYSTE\INAME constant NAE = UTS -- Target dependent

STORAGE-UNIT constant = 8.
%MEORYSIZE constant = '31

-- In storage units

System-Dependent Named Numbers

MININT constant = INTEGER'POS(INTEGER'FIRST),
MAXINT constant = INTEGER'POS(INTEGER'LAST,
MAXDIGITS constant = 15,
MAX N XANTISSA constant = .31,

FIN EDELTA constant = 2 0"*(-31).
TICK constant = I oE-.3, -- CLOCK funct on has msec resolut on

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range -127 127

-- Implementation-dependent additions to package SYSTEM --

N.WLL_AIDDRESS constant ADDRESS.
-- Same bit pattern as "null" access value
-- This is the value of 'ADDRESS for named numbers
-- The '.ADDRESS of any obj ect which :,coupies storage
- - is NOT equal to this value

kDDRESSSIZE constant = 32
-- Number of bits in ADDRESS ob)-cts.
.. = ADDRESS'SIZE but static

.ADDRESSSEGNIENT-SIZE constant = 2*24
-- Number of storage units in address segment

type ADDRESSOFFSET is new INTEGER,
-- Used for address arithmetic

type ADDRESSSEImENT is new INTEGER,

-- Always zero on targets with
-- uinsegmented address space

lubtvpe NORMALIZED.ADDRESSJOFFSET is
.ADDRESSOFFSEr range 0 ADDRES_SEC,%ENTSIZE -

-- Range of address offsets returned by OFFSETOF

Hinct on a*". addr ADDRESS zf fset ADDRESSC)FFSET return \DDRESS
funct -n - ADDRESSOFFSET idr .DDRESS r'tur. J DRESS
- - EFFECTS

-IAdd an offset to an address May cross segment boundaries on

targets where objects may span segments On other targets

--fCONSTRAINT-ERROR will be raised wYhen

--IOFFSET-OF(addr) -+ offset not in NOR\L-kLZEDADDRESSOFFSET

function "-"(left, right ADDRESS) return A.DDRESS _OFFSET,

--IEFFECTS

--ISubtract two addresses returning an)ffset This

o f I s e 1. m ay e x c e e d t h e s e g m e n t s iz e oDn t a r g e t s w n e r e
--Iobjects may span segments On other targets
-ICONSTRAJkNTERROR willi be raised if SECMNTOF(left)
-ISEC(ENT-OF(r ig h t)

function '-"(addr ADDRESS :-ffset ADDRESS-OFFSET) return
.ADDRESS,

EFFECTS

-ISubtract an offset from an address returning an address

-- May cross segment boundaries on targets where

-Iobjects may span segments
--IOn other targets. CONSTRAINT-ERROR will be raised when

-IOFFSET-OF(add r) of fs ct, not in NOR.NALI ZED-ADDRESSOFFSET

function OFFSET-OF a d dr ADDRESS) rturn NORMALIZED.ADDRESS-OFFSET,
-Extract offset part of ADDRESS
-Always in range 0 seg..s ize - I

f u n cion SEGMENT.OF l addr ADDRESS) return ADDRESSSEG',%NT

f u n t ion MAKE..ADDRESS 'of f--e t ADDRESSjDFFSET
segmen t ADDRE S S -S E(ENT =0) r e t u - ADDRE SS

-- EFFECTS

-- Builds an address given an offset and a segment

- Of fs et s may- be > e gm en t s i ze on ta r g ets w he re o bje cts mna

-- span segments, in which case it is equivalent to
-- "NAE..ADDRESS (0. segment) -of fset "
-IOn other targets. CONSTRAINT-ERROR will be raised when

Df f Ifset not in NORMtAL IZEDADDRES S-OFFSET

ty-pe Supported-Language-Nane is --__Target dependent
.--The following are "foreign" languages

AS S EMB LEfl
AIE-ASSENMLER -- NOT a. fore ign" language - uses ALE RTS

-Most/least accurate builIt- in nteger and float types

subtype LONGEST-INTEGER is STANDA.RD INTEGER,

subtype SHORTEST-INTEGER is STANDARD INTEGER,

s ub t vpe LONGEST-FLOAT i s STAINDAR D FLOAT
subtype SHORTEST-FLOAT is STANDARD SHORT-FLOAT.

r IV a t e

'.'A.DDILLSS s access INTEGEr
- - Th ~e esig niirt ' .pe h er e I NTEGER s

- irrelevant ADDRESS is made an access "yp&
* - s imply toa g ua ran te e it has t.he s ame s ize e :

a c ace ss v aIu e s, w h ich a re s in glIe ad d res se s

A I Al loc at ors o f type ADDRESS are NOT mean ingful

NVULL-A-DDRESS constant ADDRESS =null,

end SYSTEM

F.4 Representation Clauses

This section describes the list of all restrictions on representation clauses.

"NOTE: An implementation may limit its acceptance of representation clauses
to those that can be handled simply by the underlying hardware.... ff a program
contains a representation clause that is not accepted /by the compiler!, then the
program is illegal." (LRM 13.1(10)).

Those restrictions which are defined by the LRM are not listed. A description
of the effect of the representation clause is also included where appropriate.

a. Length clauses:

Size specification: T'SIZE.

The size specification may be applied to a type T or first-named subtype
T which is an access type. a scalar type, an array type or a record type.

A1-00536/07 has alterered the meaning of a size specification. In
particular. the statement from the LRM 13.2.a that the expression in
the length clause specifies an upper bound for the number of bits to be
allocated to objects of the type is incorrect. Instead. the expression
specifies the exact size for the type. Objects of the type may be larger
than the specified size for padding. Note that the specified size is not
used when the type is used as a component of a record type and a
component clause specifying a different size is given.

If' the length clause can not be satisfied by the type. an error mnessage
will be generated.

The supported values of the size expression are explained for the types
as follows. If the value of the size expression is not supported. an error
message will be generated.

access type: the only size supported is 32.

integer. fixed point, or enumeration type: minimum size suppcxted is 1.
the maximum size that is supported is 32. the size of the largest
predefined integer type. Biased representation is not supported.

floating point type: the sizes supported are 32 and 64. Note that the size
must satisfy the DIGITS requirement. No support is provided
for shortened mantissa and/or exponent lengths.

record type: if the size of the unpacked type is greatier than the specified
size of the length clause, an implicit pragma pack will Ie
assumed on the record type. If -he size of the implicit prnzmi
packed record type is still ,.roater than the specili Id >ize)f hi,_

17- 11

length clause, an error will be generated. (See also Pragma
Pack F.1.8 and Record Representation Clauses F.4.c).

array type: if the size of the unpacked array type is greater than the size
clause expression, an implicit pragma pack will be assumed on
the array type. If the size of an implicit pragma packed array
type is still greater than the size expression clause, an error will
be generated.

Specification of collection size: T'STORAGESIZE.

The effect of the specification of collection size is that a contiguous area
of the required size will be allocated for the collection. If an attempt to
allocate an object within the collection requires more space than
currently exists in the collection, STORAGE-ERROR will be raised.
Note that this space includes the header information.

* Specification of storage for a task activation: T'STORAGESIZE.

The value specified by the length clause will be the total size of the
stacks allocated for the task. rounded up to a multiple of 8192 (two

'pages' or 'stack chunks). The primary and secondary stacks will each be
allocated one half of the (rounded-up) size.

" Specification of small for a fixed point type : T'SMALL

The value of T'SNL-kLL is restricted to composite powers of 2 and 5 (e.g.
2, 5, 10).

b. Enumeration Representation Clauses:

Values must be ir the range of MININT .. MAXINT.

c. Record-representation-clause:

An alignment clause forces each record of the given type to be allocated at a
starting address that is a multiple of the value of the given expression.
Allowed alignment values are I (SU aligned), 2 (half-word aligned) and 4
(full-word aligned).

The range of bits specified has the following restrictions: if the starting bit is
0. there is no limit on the value for the ending bit; if the starting bit is
greater than 0. then the ending bit must be less than or equal to 31.

Record components, including those generated implicitly by the compiler.
whose locations are not given by the representation-clause, are laid out by
the compiler followi,g all the components whose locations are given hy the
representation-clause. Such ,-minponents)f the invariant part of the recor,
are allocated to follow the iser-specified components of the invariant ;r

F-12

and such components in any given variant part are allocated to follow the
user-specified components of that variant part.

The actual size of the record object (including its use as a component of a
record or array type) will always be a multiple of storage units (e.g 8,16,24.
etc. bits) with padding added to the end of the record, if necessary. User-
specified ranges must contain at least the minimal number of bits required
to represent a (bit-packed) object of the corresponding type: e.g. to represent
an integer type with a range of 0..15. at least 4 bits must be specified in the
record representation specification range.

d. Address clauses:

Address clauses are allowed for objects (variable or constant) and for
subprograms to which a pragma INTERFACE applies. Address clauses are
not allowed for packages or tasks. The interpretation of the value of an
address clause is described in F.6.

.. F -I. ,;:

F.5 Implementation-dependent Components

This section describes the conventions used for any implementation-generated
name denoting implementation-dependent ncmponents.

There are no implementation-generated names denoting implementation-
dependent (record) components, although there are, indeed, such components.
Henc-. there is no convention (or possibility) of naming them and, therefore, no
way to offer a representation clause for such components.

NOTE: Records containing dynamic-sized components will contain (generally)
unnamed offset components which will "point" to the dynamic-sized components
stored later in the record. There is no way to specify the representation of such
components.

F -II

F.6 Address Clauses

This section describes the interpretation of expressions that appear in address
clauses, including those for interrupts.

The address specified by the simple-expression of an address clause.

for simple-name use at simple-expression :

may be a call on SYSTEM.M.'AE.ADDRESS, for example,

for AB$C use at SYSTEM.N'LI. E.ADDRESS(16#FF#)

Values in the range O..System.*MemorySize-I will be interpreted as addresses as
written.

F- 15

F.7 Unchecked Conversions

This section describes any restrictions on unchecked conversions.

The source and target must both be of a staticly sized type (other than a
discriminated record type) and both types must have the same static size.

________ _F- 1.6.

F.8 Input-Output

This section describes implementation-dependent characteristics of the input-
output packages.

(a) Declaration of type DirectjO.Count? [14.2.51
0..Integer'last;

(b) Effect of input/output for access types?
Not meaningful if read by different program invocations

(c) Disposition of unclosed IN.FILE files at program termination? [14.1(7)]
Files are closed.

(d) Disposition of unclosed OUT-FILE files at program termination? [14.1(7)]
Files are closed.

(e) Disposition of unclosed INOUTFILE files at program termination? [14.1(7)]
Files are closed.

(f) Form of, and restrictions on, file names? [14.1(1)1
UTS filenames

(g) Possible uses of FORM parameter in I/O subprograms? [14.1(1)]
The image of an integer specifying the UTS file protection on
CREATE.

(h) Where are I/O exceptions raised beyond what is described in Chapter 14?
[14.1(11)1

None raised.

(i) Are alternate specifications (such as abbreviations) allowed for file names? If
so, what is the form of these alternatives? [14.2.1(21)]

No.

(j) When is DATA.ERROR not raised for sequential or direct input of an
inappropriate ELEMENTTY'PE? [14.2.2(4), 14.2.4(4)]

When it can be assigned without CONSTRAINTERROR to a
variable of ELEMENTTYPE.

(k) What are the standard input and standard output files? [14.3(5)]
UTS standard input and output

(1) What are the forms of line terminators and page terminators? [14.3(7)]
Line terminator is ASCII.LF (line feed);
page terminator is ASCII.FF (form feed)

(m) Value of TextAiO.Count'last? [14.3(8)i
0 integer'last

(n) Value of TextIO.Field'last? [14.3.7(2)]
integer'last

F-1-7

(o) Effect of instantiating ENUMERATION-1O for an integer type? [14.3.0(15)]
The instantiated Put will work properly, but the instantiated Get
will raise Data.Error

(p) Restrictions on types that can be instantiated for input/output?
Neither direct I/O nor sequential I/O can be instantiated for an
unconstrained array type or for an unconstrained record type
lacking default values for its discriminants.

(q) Specification of package LowLevelIO? [14.6]
Low.LevelIO is not provided.

F-IS

F.9 Tasking

This section describes implementation-dependent characteristics of the tasking
run-time packages.

Even though a main program completes and terminates (its dependent tasks, if
any, having terminated), the elaboration of the program as a whole continues
until each task dependent upon a library unit package has either terminated or
reached an open terminate alternative. See LRM 9.4(13).

F- il

F.10 Other Matters

This section describes other implementation-dependent characteristics of the
system.

a. Package Machine-Code
Will not be provided.

b. Order of compilation of generic bodies and subunits (LRM 10.3:9):
Body and subunits of generic must be in the same compilation as
the specification if instantiations precede them (see AI-00257/02).

F -20

F.11 Compiler Limitations

(a) Maximum length of source line?
255 characters.

(b) Maximum number of "use" scopes?
Limit is 50. set arbitrarily by SEMANTICS as maximum number of
distinct packages actively "used."

(c) Maximum length of identifier?
255 characters.

(d) Maximum number of nested loops?
24 nested loops.

F-21

